Intraoperative Electron Radiation Therapy

Index:


IOERT Treatment Planning

Our research in Dosimetry Planning for Intraoperative Electron Radiation Therapy (IOERT) started with a collaboration with Dr. Felipe Calvo at Hospital G. U. Gregorio Marañón in Madrid more than 20 years ago. We developed a prototype for Treatment Planning in IOERT that was later transferred to a company (GMV), obtaining CE and FDA approval (radiance®). This tool allows estimating the dose distribution in IOERT on a patient CT scan.

To obtain the actual position of the IOERT applicator during surgery, our group developed several multi-camera optical tracking solutions. We were able to install the necessary hardware in a operating room at Hospital G. Marañón, evaluating the system accuracy, stability and positioning error.

Position and rotation errors calculated for an IOERT applicator on different treatment scenario (García-Vazquez 2013).

We evaluated the system on a pilot study including several IOERT cases where the application position was visualized in real time on two surgical displays.

Dose estimation from intraoperative CT

To update the dose estimation during IOERT treatment, it would be necessary to acquire an intraoperative CT image. We evaluated several intraoperative CT alternatives (O-arm, BodyTom and TrueBeam) on several phantoms, comparing the dose estimation with a reference imagen obtained in a CT simulator.

Related publications

  • S. S. Goswami, J. E. Ortuño, A. Santos, F. A. Calvo, J. Pascau and M. J. Ledesma-Carbayo. A New Workflow for Image-Guided Intraoperative Electron Radiotherapy Using Projection-Based Pose Tracking. IEEE Access, 8, 137501–137516 (2020). [doi] [UC3M Research Portal] [pdf, Open Access under the Creative Commons Attribution 4.0 International International License] – Impact factor: 3.745 (Q1)
  • V. García-Vázquez, F. A. Calvo, M. J. Ledesma-Carbayo, C. V. Sole, J.A. Calvo-Haro, M. Desco and J. Pascau. Intraoperative computed tomography imaging for dose calculation in intraoperative electron radiation therapy: Initial clinical observations. PLoS ONE, 15(1), e0227155 (2020). [doi] [UC3M Research Portal] [pdf, Open Access under the Creative Commons Attribution 4.0 International License] – Impact Factor: 2.740 (Q1)
  • E. Marinetto, D. García-Mato, A. García, S. Martínez, M. Desco, and J. Pascau. Multicamera Optical Tracker Assessment for Computer Aided Surgery Applications. IEEE Access, 6, 64359-64370 (2018). [doi] [UC3M Research Portal] [pdf, Open Access] – Impact factor: 3.745 (Q1)
  • V. García-Vázquez, B. Sesé-Lucio, F. A. Calvo, J. J. Vaquero, M. Desco and J. Pacau. Surface scanning for 3D dose calculation in intraoperative electron radiation therapy. Radiat Oncol, 13, 243 (2018). [doi] [UC3M Research Portal] [pdf, Open Access under the Creative Commons Attribution 4.0 International License] – Impact factor: 2.895 (Q1)
  • E. Marinetto, J. G. Victores, M. García-Sevilla, M. Muñoz, F. A. Calvo, C. Balaguer, M. Desco and J.Pascau. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures. Medical Physics, 44, 5061–5069 (2017). [doi] [UC3M Research Portal] – Impact factor: 2.884 (Q1)
  • V. García-Vázquez, E. Marinetto, P. Guerra, M. F. Valdivieso-Casique, F. A. Calvo, E. Alvarado-Vásquez, C. V. Sole, K. G. Vosburgh, M. Desco and J. Pascau. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation. Zeitschrift für Medizinische Physik, 27(3), 218-231 (2017). [doi] [UC3M Research Portal] [pdf, Open Access under the Creative Commons Attribution-Non_Comercial-NoDerivatives 4.0 International] – Impact factor: 1.891 (Q2)
  • M. F. Valdivieso-Casique, R. Rodríguez, S. Rodríguez-Bescós, D. Lardíes, et alRADIANCE-A planning software for intra-operative radiation therapy. Transl Cancer Res, 4(2), 196–209 (2015). [doi] [UC3M Research Portal] [pdf, Open Access under the Creative Commons Attribution 4.0 International License] – Impact Factor: 0.986
  • P. Guerra, J. M. Udías, E. Herranz, J. A. Santos-Miranda, et alFeasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy. Phys Med Biol, 59(23), 7159–7179 (2014). [doi] [UC3M Research Portal] – Impact Factor: 2.883
  • J. Pascau. Image-guided intraoperative radiation therapy: current developments and future perspectives. Expert Review of Medical Devices, 11(5), 431–434 (2014). [doi] [UC3M Research Portal] [pdf] – Impact factor: 2.212
  • . V. Sole, F. A. Calvo, C. Ferrer, J. Pascau and H. Marsiglia. Bibliometrics of intraoperative radiotherapy. Strahlenther Onkol, 190, 1111–1116 (2014). [doi] [pdf] – Impact Factor: 2.899
  • F. A. Calvo, C. V. Sole, R. Herranz, M. Lopez-Bote, J. Pascau, A. Santos, A. Muñoz-Calero, C. Ferrer and J. L. Garcia-Sabrido. Intraoperative radiotherapy with electrons: fundamentals, results, and innovation. ecancer, 7, 339 (2013). [doi] [pdf]
  • V. García-Vázquez, E. Marinetto, J. A. Santos-Miranda, F. A. Calvo, M. Desco and J. Pascau. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios. Phys Med Biol, 58, 8769 (2013). [doi] [UC3M Research Portal] – Impact Factor: 2.883
  • F. A. Calvo, C. V. Sole, M. E. González, E. D. Tangco, J. López-Tarjuelo, I. Koubychine, J. A. Santos, J. Pascau, R. Herranz and C. Ferrer. Research opportunities in intraoperative radiation therapy: the next decade 2013–2023. Clin Transl Oncol, 15, 683–690 (2013). [doi] [UC3M Research Portal] – Impact Factor: 2.737